Try to get a fast (what I mean is detecting in lesss than 1 second on mainstream CPU) object-detection tool from Github, I experiment with some repositories written by PyTorch (because I am familiar with it). Below are some conclusions:
1. detectron2
This the official tool from Facebook Corporation. I download and installed it successfully. The test python code is:
import detectron2 from detectron2.utils.logger import setup_logger from detectron2.config import get_cfg from detectron2.engine import DefaultPredictor from detectron2 import model_zoo setup_logger() # import some common libraries import numpy as np import cv2 import sys import time cfg = get_cfg() # add project-specific config (e.g., TensorMask) here if you're not running a model in detectron2's core library cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml")) cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model # Find a model from detectron2's model zoo. You can use the https://dl.fbaipublicfiles... url as well cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml") cfg.MODEL.DEVICE = "cpu" predictor = DefaultPredictor(cfg) img = cv2.imread(sys.argv[1]) begin = time.time() outputs = predictor(img) print("time:", time.time() - begin) print(outputs)
Although can’t recognize all birds in below image, it will cost more than 5 seconds on CPU (my MackbookPro). Performance is not as good as my expectation.
Image may be NSFW.
Clik here to view.
2. efficientdet
From the paper, the EfficientDet should be fast and accurate. But after I wrote a test program, it totally couldn’t recognize the object at all. Then I gave up this solution.
3. EfficientDet.Pytorch
Couldn’t download models from it’s model_zoo.
4. ssd.pytorch
Finally, I came to my sweet ssd(Single Shot Detection). Since have studied it for more than half a year, I wrote below snippet quickly:
def base_transform(image, size, mean): x = cv2.resize(image, (size, size)).astype(np.float32) x -= mean x = x.astype(np.float32) return x class BaseTransform: def __init__(self, size, mean): self.size = size self.mean = np.array(mean, dtype=np.float32) def __call__(self, image, boxes=None, labels=None): return base_transform(image, self.size, self.mean), boxes, labels def detect(img, net, transform): FONT = cv2.FONT_HERSHEY_SIMPLEX COLORS = [(255, 0, 0), (0, 255, 0), (0, 0, 255)] height, width = img.shape[:2] x = torch.from_numpy(transform(img)[0]).permute(2, 0, 1) x = Variable(x.unsqueeze(0)) y = net(x) # forward pass detections = y.data[0] # scale each detection back up to the image scale = torch.Tensor([width, height, width, height]) for index, loc in enumerate(detections[3]): score = loc.numpy()[0] if score >= 0.5: loc = loc[1:] pt = loc * scale print(score, pt) cv2.rectangle( img, (int(pt[0]), int(pt[1])), (int(pt[2]), int(pt[3])), COLORS[index % 3], 2, ) cv2.putText( img, str(score), (int(pt[0]), int(pt[1])), FONT, 1, (255, 255, 255), 1, cv2.LINE_AA, ) return img img = cv2.imread("bird_matrix.jpg") net = build_ssd("test", 300, 21) # initialize SSD net.load_state_dict(torch.load("ssd300_mAP_77.43_v2.pth", map_location="cpu")) transform = BaseTransform(net.size, (104 / 256.0, 117 / 256.0, 123 / 256.0)) img = detect(img, net, transform) cv2.imwrite("result.jpg", img)
The result is not perfect but good enough for my current situation.
Image may be NSFW.
Clik here to view.